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Figure 5.11 Decomposition of a periodic square signal with period 100 samples as a sum of 19
3 harmonic sinusoids with frequencies @, =27k /100 .
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The complex spectrum of a sound x(¢) in the time range (¢1, #2) is

X =1a2 x(t) 27 dt

for any frequency fin the two-sided frequency domain (-F, +F). If x(¢) 1s expressed in units of Pascal, X(f) is
expressed in units of Pa/Hz. In Praat, this complex spectrum is the quantity stored in a Spectrum.

From the complex spectrum we can compute the one-sided power spectral density in Pa?/Hz as

PSD(f) = 2|X()* / (13 - 11)

where the factor 2 is due to adding the contributions from positive and negative frequencies. In Praat, this
power spectral density 1s the quantity stored in a Spectrogram.
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It is often useful to express the power spectral density in dB relative to Pyr=2- 10~ Pa:

PSDgg(f) = 10 log1o { PSD(f) / Pref* }

Since the argument of the logarithm is in units of Hz™1, this spectral measure can loosely be said to be in
units of “dB/Hz”. In Praat, this logarithmic power spectral density is the quantity stored in an Ltas; it is also
the quantity shown in pictures of a Spectrum and a Spectrogram.
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[f the complex spectrum is given by S(f), where f'is the frequency, the centre of gravity is given by

lo* FISOP df

divided by the "energy"
Jo™ ISP df

Thus, the centre of gravity is the average of fover the entire frequency domain, weighted by |S(f)/P. For p =
2, the weighting 1s done by the power spectrum, and for p = 1, the weighting 1s done by the absolute
spectrum. A value of p = 2/3 has been seen as well.



If the complex spectrum is given by S(f), the nth central spectral moment is given by

Jo* (F=L ISP df

divided by the "energy"

NG

In this formula, £ is the spectral centre of gravity (see Spectrum: Get centre of gravity...). Thus, the nth

central moment is the average of (f— f.)” over the entire frequency domain, weighted by |S(f)[’. For p = 2,

the weighting 1s done by the power spectrum, and for p = 1, the weighting 1s done by the absolute spectrum.
A value of p = 2/3 has been seen as well.
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For n = 1, the central moment should be zero, since the centre of gravity f. is computed with the same p. For

n =2, you get the variance of the frequencies in the spectrum; the standard deviation of the frequency is the
square root of this. For n = 3, you get the non-normalized spectral skewness; to normalize it, you can divide
by the 1.5 power of the second moment. For n = 4, you get the non-normalized spectral kurtosis; to
normalize it, you can divide by the square of the second moment and subtract 3. Praat can directly give you
the quantities mentioned here:
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o Alpha Ratio, ratio of the summed energy from
50-1000 Hz and 1-5kHz

o« Hammarberg Index, ratio of the strongest energy
peak in the 0-2 kHz region to the strongest peak
in the 2-5kHz region.

e Spectral Slope 0-500 Hz and 500-1500 Hz, linear
regression slope of the logarithmic power spec-
trum within the two given bands.
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