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AUTOMATIC MODELLING OF FUNDAMENTAL FREQUENCY USING A
QUADRATIC SPLINE FUNCTION.

Daniel Hirst & Robert Espesser

CNRS (URA 261), Institut de Phonétique d'Aix, Université de Provence.

Introduction.
There have been a number of different implementations of  phonological/phonetic models of
intonation designed to derive an acoustic output (Fo curve) from a symbolic input (for recent
overviews cf. Hirst 1991, Monaghan 1992). As in all fields of speech analysis, however, it is the
inverse problem which is really the most challenging. Given an Fo curve, how can we recover a
symbolic representation? Even if we are able to perform such symbolic coding automatically,
how should we validate the output of such a programme? One way would be to require the
symbolic representation to be in such a form that it can be used as input to a synthesis system,
the acoustic output of which can then be directly compared to the original F0 curve. The coding
problem is thus directly related to the synthesis problem and in the rest of this article we shall
reserve the term 'model' for attempts to solve both the coding problem and the synthesis problem
together:

symbolic 
representation

F0 curve

 coding

synthesis

Figure 1 outline of a model of fundamental frequency.

It is obvious that an automatic modelling system would be highly desirable for a number of
reasons. An efficient algorithm would be extremely useful for collecting data for improving both
speech synthesis and automatic speech recognition. Such a tool would also of course be
extremely valuable for obtaining empirical evidence for testing phonological models of
intonation and examining the variability in prosodic parameters across languages, dialects and
individuals.
Despite its obvious interest, the modelling problem has received surprisingly little attention from
workers in the field. A few exceptions are Scheffers (1988) who describes a technique for
obtaining an automatic piece-wise linear approximation of an F0 curve and Taylor & Isard
(1992) who describe a model analysing an F0 curve as a linear sequence of 3 primitive contours:
rise element, fall element and connection element.
In this paper, after a discussion of some of the background and assumptions behind our work
we present an algorithm which has been developed in the Institut de Phonétique d'Aix and which
constitutes, so far as we are aware, the first automatic programme of its kind.

1. Background and assumptions
The algorithm we describe here builds on a number of underlying assumptions about an
appropriate form for different possible levels of representation for intonation. There is
considerable difference of opinion concerning these levels of representation (for discussion cf.
Hirst 1991, 1992). There does, however, appear to be a certain degree of agreement that raw
fundamental frequency curves can be analysed as the superposition of two fairly independent
components: a microprosodic component caused by the nature of the individual phonematic
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segments of the utterance and a macroprosodic component reflecting the choice of intonation
pattern for the utterance. One of the first steps in modelling an F0 curve, then, is to attempt to
factor out the raw curve into its two components.
- microprosodic component
Di Cristo & Hirst (1986) describe an experiment in which nonsense syllables "bababa" and
"vavava" were pronounced by a single speaker in three different contexts:

(i) “_____, c'est un mot.”
(ii)  “C'est un mot, _______.”
(ii) “C'est un mot, _______?”

The contexts were chosen to ensure that the nonsense words were pronounced with rising, low
flat and high flat pitch patterns respectively. The fundamental frequency at the centre of the
consonants of the nonsense words was compared to that of the mean of the surrounding vowels.
Nicolas (1989) carried out the same experiment with four subjects (two male, two female), six
voiced consonants (b d g v z J) two contexts (high, low) and four repetitions. As can be seen in
the following figure illustrating the voiced stops for one speaker, the relationship between the F0
on the consonant and on the surrounding vowels appears to be fairly linear.
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Figure 2: fundamental frequency at the centre of voiced consonants /b/ /d/ /g/ compared to that of surrounding
vowels /a/. Data from Nicolas (1989)

In fact, Nicolas showed that a logarithmic regression gave slightly better predictions than a linear
one for most speakers and most consonants although the differences between linear and
logarithmic predictions were very small. We conclude then that the raw f0 curve can be factored
out into a microprosodic component which, at least at a first approximation, can be treated as a
multiplicative factor superimposed on a (linear or logarithmic) macroprosodic component.
- macroprosodic component
It follows from the above that the macroprosodic component of an F0 curve will be practically
identical to the raw F0 curve observed for utterances consisting entirely of vowels and sonorant
consonants, since these are known to have the smallest micromelodic effect (Di Cristo & Hirst
1986).
We have found that the F0 curves for sentences of this type ("Molly may marry Larry", "Oui il
a loué l'île aux lilas.") can be very closely modelled by a quadratic spline function and we have
argued elsewhere (Hirst 1980, 1983, 1987) that a function of this type allows us to treat a
sequence of target points as an appropriate phonetic representation for F0 curves.
A spline function of degree n corresponds to a continuous sequence of polynomials of degree n,
the derivatives of which up to and including degree n-1 are everywhere continuous. Cubic
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splines are commonly used for interpolating values in a sequence of which only certain values
are known. Quadratic splines have the advantage that they interpolate monotonically between
points of which the first derivative is zero. Quadratic splines are defined by a sequence of triples
<t,h,k> where t and h define the time and frequency of the target point and where k defines the
spline-"knot", that is the inflection point of the s-shaped transition between two target points. In
the rest of this paper we assume for simplicity that these transitions are symmetrical1, that is that
the inflection point is always situated halfway between two adjacent targets.
A recent study ('t Hart 1991) has suggested that our attempt to synthesise F0 curves with
parabolas rather than with straight lines (as has been standard practice for several years in
Eindhoven) is misguided since subjects cannot hear the difference anyway. This result calls for
a few comments.
(i) Trivially, it is of course possible to approximate any complex function to an arbitrary
precision by a sequence of straight lines. At the limit one line segment per pair of F0 values will
be exactly equivalent to the output of a quadratic spline function. This is not of course what 't
Hart has in mind. Note however that the straight-line interpolation which he compares to
parabolas is not simply linear interpolation between target-points. Instead the interpolation is
between horizontal plateaux so that a simple rising pattern, which we would code with two target
points:

Figure 3: Coding an F0 rise using a quadratic spline function.

would need to be coded as a sequence of five straight-line sections as in:

Figure 4: Coding an F0 rise as a sequence of straight lines.

The economy of such a representation is not evident.

                                    
1 Experimental evidence (Cavé, Hirst & Rossi 1986) suggests that the exact localisation of this inflection point
is not crucial for the quality of synthesised speech. In natural speech a certain assymmetry is in fact observed
with the inflection point being closer to the higher of the two targets.
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(ii) We do not consider that 't Hart has demonstrated conclusively that straight-line synthesis is
always just as good as quadratic spline functions. Since quadratic spline functions give a closer
approximation to real F0 curves than do straight lines, it is, in our opinion, quite possible that
these differences will be appreciable under certain circumstances. Even though subjects may
claim that they are unable to distinguish certain stimuli it is well known that under certain
circumstances these stimuli may give rise to different reactions.
(iii) Finally, we might conclude that the very fact that the automatic coding algorithm which we
describe below works at all is a good enough reason for using the same model for synthesis
since as we suggested above this means that the output of the analysis feeds directly into the
synthesis. It would of course be possible to adapt this output to feed into a straight-line
synthesis system but the direct comparison between observed F0 and modelled F0 would no
longer be possible.
2. An algorithm for automatic coding of F0 curves
The algorithm which we present here consists of four stages. The central part of the algorithm
(stage 2) is an asymmetric version of what we call modal regression as defined below. This
stage works on the assumption that the only effect of the microprosodic component of a
fundamental frequency curve is to lower the values of the underlying smooth continuous
macroprosodic curve. Since real microprosodic components both raise and lower this curve, a
preliminary stage is needed (stage 1) to make sure that any potential raising effects have been
eliminated. The second stage then applies the modal regression technique within a moving
window, to provide one optimal estimate of a local fundamental frequency target centred on each
value of the fundamental frequency curve. The next stage of the algorithm (stage 3) then selects
a partition of these target candidates. The final stage (stage 4) reduces the candidates within each
partition to a single target.
Modal Regression
The technique used in this algorithm is one which we call "modal regression" since it bears in
fact the same relation to ordinary regression as the estimation of the mode of a distribution bears
to that of the mean. Both the mean and the mode of a distribution are in some sense the values
which are the closest to all the items of the distribution. In the case of the arithmetic mean this
"closeness" is defined by calculating the square of the distance from each item of the
distribution and selecting a value such that the sum of these squared distances is minimal. In
contrast, the mode of a distribution can be defined as the value which is less than a given
threshold D from the largest possible number of items of the distribution. Thus while a
distribution only has one mean it may have a number of different modes, and even when there is
only one mode its value may be dependent on the choice of the threshold D.
Ordinary regression is basically the same as the calculation of the mean except that instead of
comparing the items of a distribution to a single value, the items of a series are compared to the
values of a well-defined function (in the case of linear regression to a straight line, in the case of
quadratic regression to a parabola etc), the parameters of which are selected to minimise the sum
of the squared distances from the individual items. We can define modal regression, then, as
selecting the parameters of a given function such that it is less than a given distance D from the
largest possible number of items of a series. Note that while this definition tells us what the aim
of modal regression is, it does not tell us how we are to go about selecting the parameters to
fulfill this aim. The task will be further complicated by the fact that like the mode of a
distribution there may be more than one value for the parameters of a modal regression. One
method for selecting these modal parameters is presented in §3.2 below.
In the case of fundamental frequency curves, we have suggested that with the exception of some
local effects linked to the onset and offset of voicing and which the first stage of the algorithm
describe below is designed to eliminate, all other microprosodic effects consist of a lowering of
the "underlying" macroprosodic curve which we propose to model as a quadratic spline
function. We consequently introduce the further constraint that the quadratic spline function we
wish to find is such that there are no values more than a distance D above the function and as
few values as possible more than the same distance D below it.
The four stages:
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(1) pre-processing of f0
(2) estimation of target-candidates,
(3) partition of candidates,
(4) reduction of candidates

are described in the rest of this section. The typical values given for each parameter of the
algorithm were obtained by a process of optimisation which is described in §4 below.
The fundamental frequency curves input to the algorithm are detected using a comb function
(Martin 1981, Espesser 1982) and are sampled every 10ms with 0 for values in unvoiced zones.
2.1 pre-processing of f0
All values which are more than a given ratio (typically 5%) higher than both their immediate
neighbours are set to 0. Since unvoiced zones are coded as zero, this pre-processing has
essentially the effect of eliminating one or two values (i.e. about 10 to 20ms) at the onset of
voicing.
2.2 estimation of target-candidates
The following steps are followed iteratively for each instant x

a. Within an analysis window of length A (typically 300ms) centred on x, values of F0,
(including values for unvoiced zones) are neutralised if they are outside of a range defined by
two thresholds hzmin and hzmax and are subsequently treated as missing values. Typical values
for the thresholds are 50 Hz and 500 Hz respectively.

b. A quadratic regression is applied within the window to all non-neutralised values.
c. All values of F0 which are more than a distance D  below the value of F0 estimated by

the regression are neutralised. (typical value of D fixed at 5%).
Steps b and c are re-iterated until no new values are neutralised.

d. for each instant x a target point <t,h> is calculated from the regression coefficients 
ŷ  = a + bx + cx2

where :
t = -b/(2c)
h = a +bt + ct2

If t is less than x-(A/2) or greater than x+(A/2) or if h is less than hzmin or greater than hzmax,
then t and h are treated as missing values.
Steps b, c and d are repeated for each instant x,  resulting in one estimated target point <t;h>
(or a missing value) for each original value of Fo.
2.3 partitionning of target candidates
Within a moving window of length R (typically 200ms) centred on each instant x,  td(x) and
hd(x) are calculated as the absolute mean distances between the t and h values of the targets in
the first half of the window and those in the second half of the window. A combined distance is
then obtained by weighting these distances :

d(x) = 
dt(x) * wd + dh(x) *wh

wd + wh  
where :

wd = 
1

mean(dt(x)) 
and

wh = 
1

mean(dh(x)) 
The boundaries of the partition are then set to each value x respecting the following three
conditions :

d(x) > d(x-1)
d(x) > d(x+1)
d(x) > mean(d(x))

2.4 reduction of candidates
Within each segment of the partition, candidates for which either dt(x) or dh(x) are greater than
one standard deviation from the corresponding mean values for the segment are eliminated. The



Hirst & Espesser 1993 Automatic modelling of F0. - 80 –

mean value of the remaining targets in each segment is then calculated as the final estimate of t
and h for that segment.
3.Evaluation
The algorithm described above uses 5 independent parameters :

- minimum value for F0 [hzmin]
- maximum value for F0 [hzmax]
- analysis window [A]
- distance threshold [D]
- reduction window [R]

In order to optimise these parameters a small corpus was used  (corpus VNV) consisting of two
sentences, containing all the stops and fricatives (and hence all the microprosodic
configurations) of French, spoken by ten subjects (5male, 5 female).

S1 : "La pipe de Jean s'est cassée en tombant de ta gabardine."
S2 : "La fille de Charles Sablon a voulu un petit chien en guise de cadeau."

The following figures illustrate the application of the algorithm to sentence S2 of corpus
VNV.

Figure 5. Fundamental frequency for the sentence : "La fille de Charles Sablon a voulu un petit chien en guise
de cadeau."

In the following figure the different target candidates estimated by the algorithm are
represented by a grey line joining the centre of the analysis window (on the abscissae) to the
x,y value of the target estimated for that window.

Figure 6.  Estimates of targets by asymmetrical modal quadratic regression (see text).

The squares in Figure 6 correspond to the final estimates of the targets after partionning the
different candidates. The resulting modelled curve is illustrated in Figure 7 by the continuous
grey line.
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Figure 7.  Fundamental frequency curve and quadratic spline model.

The following criteria were adopted :
a) subjective evaluation
The original fundamental frequency curve and the modelled curve were compared visually.
The number of manifest errors consisting of either missing targets or false targets was
counted. The original recordings were compared (informally) with the same recordings
resynthesised using the SOLA/PSOLA technique (Roucos & Wilgus 1985, Hamon,
Moulines & Charpentier 1989) in order to check the relevance of the visual analysis.
b) objective evaluation
A mean distance was calculated between the original fundamental frequency curve (hzi )  and
the modelled curve (hz'i ) :

d =  
1
n å

i=1

n

ï
ï
ï

ï
ï
ï

1 - 
hz'i
hzi

 

During the optimisation of the algorithm a good correspondence between the two types of
evaluation was observed.
The minimum and maximum values for F0 were found to be quite robust so that it was
possible to fix the same values for all ten speakers:

- [hzmin] : 50
- [hzmax] : 500

For the other three parameters the following values were found to be optimal for the corpus :
- [A] : 300
- [D] : 5%
- [R] : 200

The algorithm was subsequently applied with its parameters fixed to the above values to two
other corpora of rather different nature :
- Corpus METEO (Nancy)
Man/machine dialogue concerning the weather conditions in the region of Nancy.
10 speakers. About 2 minutes per speaker.
- Corpus TAIX (Aix en Provence)
Three continuous texts.
4 speakers. (2 male, 2 female). About 5 minutes per speaker.
The subjective and objective evaluation techniques described above were applied to the
recordings of 2 speakers of the Corpus METEO and 1 text of 1 speaker of the corpus TAIX.
(Hirst, Nicolas & Espesser 1991).
The total error rate for these recordings (missed targets and false targets combined) although
slightly higher than that for the corpus VNV remained quite reasonable (around 5%). The
mean distance was also quite close to that observed on the first corpus.

Table 1 : summary of subjective and obective evaluation of the algorithm for 3 corpora.
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mean number number total
CORPUS distance of targets of errors length
VNV 0,0622 284   6  (2,1%)   49s
METEO

Speaker 6 0,0517 429 24  (5,2%) 119s
 Speaker 8 0,0454 343 11  (3,2%)   93s
TAIX

Text 1 Sp. 1 0,0619 161   8  (5,0%)   55s

Conclusion
While the algorithm described above is still somewhat less than perfect, it does in our opinion
constitute an interesting first approximation to a working model of fundamental frequency
curves incorporating both the coding and the synthesis of such curves. Since its development the
model has been used for the analysis of fundamental frequency curves in a number of different
languages including English, French, Spanish, Italian and Arabic (Najim & Hirst this volume)
and is apparently fairly robust.
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“AUTOMATIC MODELLING OF FUNDAMENTAL FREQUENCY.”

Daniel Hirst & Robert Espesser

CNRS, Institut de Phonétique d'Aix

Résumé
On présente un algorithme permettant le codage automatique de la fréquence

fondamentale au moyen d'une technique baptisée régression quadratique modale. La sortie de
cet algorithme, une séquence de points-cibles <Hz, ms> peut être utilisée en entrée pour la
génération de courbes de fréquence fondamentale au moyen d'une fonction spline quadratique.

Abstract
An algorithm for the automatic coding of fundamental frequency is described using a

technique called asymmetrical modal quadratic regression. The output of the algorithm, a
sequence of target points <Hz, ms>, can be used as input for fundamental frequency synthesis
by a quadratic spline function.
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